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a b s t r a c t

Toevaluate thepotentialofwoodybioenergycropsasanalternativeenergysource, there isneed

for a more comprehensive understanding of their carbon cycling and their allocation patterns

throughout the lifespan.We thereforequantified thenet ecosystemproduction (NEP) ofapoplar

(Populus) short rotation coppice (SRC) culture in Flanders during its second growing season.

Eddy covariance (EC) techniques were applied to obtain the annual net ecosystem ex-

change (NEE) of the plantation. Further, by applying a component-flux-based approach NEP

was calculated as the difference between the modelled gross photosynthesis and the

respiratory fluxes from foliage, stem and soil obtained via upscaling from chamber mea-

surements. A combination of biomass sampling, inventories and upscaling techniques was

used to determine NEP via a pool-change-based approach.

Across the three approaches, the net carbon balance ranged from 96 to 199 g m�2 y�1

indicating a significant net carbon uptake by the SRC culture. During the establishment year

the SRC culture was a net source of carbon to the atmosphere, but already during the second

growing season therewas a significant net uptake. Both the component-flux-based andpool-

change-basedapproaches resulted inhighervalues (47e108%) than theEC-estimationofNEE,

though the results were comparable considering the considerable and variable uncertainty

levels involved in the different approaches. The efficient biomass production e with the

highestpart of the total carbonuptakeallocated to theabovegroundwoode led thepoplars to

counterbalance thesoil carbon losses resulting fromlandusechange inashortperiodof time.

ª 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
1. Introduction

At the present day energy from biomass has gained interest as

an alternative for fossil fuels and as a possibility to bring down

greenhouse gas emissions [1,2]. Land use changes affecting
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the cycling and storage of carbon (C) in ecosystems [3] are one

of the main causes of the increased greenhouse gas levels in

the atmosphere [4,5]. However, afforestation of abandoned

and marginal farmland can enhance ecosystem C storage and

potentially counteract the processes of C loss [6]. Within this
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context the establishment of short rotation coppice (SRC)

plantations for bioenergy production has potential for miti-

gating the rising greenhouse gas levels in the atmosphere [7].

It has been assumed that the net CO2 emissions from bio-

energy cultures are zero [8] or are so-called ‘carbon neutral’ by

taking up as much C during the growth as released upon

conversion to energy. However, bioenergy cultures as SRC

plantationsmight act as a CO2 source, particularly in the short

to medium term [9] due to land use changes. During the

consequent years they switch to C sinks [8,10e13]. The net C

benefit of such plantations is fairly site specific [12]; it is,

therefore, important to study and quantify the C cycle of these

ecosystems in more detail and to assess their impact on

regional C balances [14].

The net C balance of an ecosystem can be assessed by both

NEP (net ecosystem production) and NEE (net ecosystem ex-

change). NEP is the difference between net primary produc-

tion (NPP) and heterotrophic ecosystem respiration. NPP is the

total amount of new organic matter produced during a certain

period [15]. It is the difference of the total photosynthetic

uptake of CO2 by the ecosystem e or the gross primary pro-

duction (GPP) e and the autotrophic ecosystem respiration.

NEE is the net CO2 flux from the ecosystem to the atmosphere

[16], which corresponds to the net difference of photosyn-

thetic carbon uptake and the respiration of autotrophs and

heterotrophs [17]. NEE equals NEP disregarding sources and

sinks for CO2 not involving conversion to or from organic C

[18]. To understand the dynamics of the ecosystem C sinks, it

is important to estimate the size of each C pool and to quantify

all C fluxes. Studies of the C balance of SRC plantations are

rather scarce [19,14,12] and the simultaneous quantification of

NEE with eddy covariance techniques, and of NEP with both C

flux and C pool assessments were never done before for an

SRC culture.

The present study is part of the large-scale POPFULL project

[20] which aims to make a full greenhouse gas balance and to

investigate the economic and energetic efficiency of an oper-

ational SRC culture with poplar. Within this context, the

specific objectives of this study were: (i) to quantify the com-

ponents of the carbon balance of an SRC plantation; (ii) to

quantify NEP and determine the sinkesource status and (iii) to

compare the estimated NEP with NEE measured through eddy

covariance techniques. All measurements were performed

during the second growth year of the first rotation.
2. Material and methods

2.1. Site and plantation description

The operational POPFULL site is located in Lochristi, province

East-Flanders, Belgium (51�0604400 N, 3�5100200 E). The region is

subjected to an oceanic climate with a long-term average

annual temperature and precipitation of 9.5 �C and 726 mm,

respectively [21]. According to the Belgian soil classification

the area forms part of the sandy region with poor natural

drainage [22]. The 18.4 ha site was a former agricultural area

consisting of croplands (62%; with corn as the most recent

cultivated crop in rotation) and extensively grazed pasture

(38%). On 7e10 April 2010 an area of 14.5 ha (excluding the
headlands) was planted with 12 selected poplar (Populus) and

three selected willow (Salix) genotypes, representing different

species and hybrids of Populus deltoides, Populus maximowiczii,

Populus nigra, and Populus trichocarpa and Salix viminalis, Salix

dasyclados, Salix alba and Salix schwerinii. The present study

focuses on the poplar genotypes only. Using a modified leek

planting machine 25 cm long dormant and unrooted cuttings

were planted in a double-row planting scheme with alter-

nating distances of 0.75 m and 1.50 m between the rows and

on average 1.10 m between trees within the rows (plant den-

sity of 8000 ha�1). The plantation was designed in large

monoclonal blocks of eight double rows wide that covered

both types of former land use (cropland and grazed pasture).

Each genotype has minimum two and maximum four repli-

cated blocks with row lengths varying from 90 m to 340 m.

After two years of growth (2010, GY1 (growth year) and 2011,

GY2) the plantation was harvested for the first time on 2e3

February 2012 with commercially available SRC harvesters.

Trees continue growing as a coppice culture with multiple

shoots per stool in the following two-year-rotations. More

details on site conditions, on poplar materials and on the

plantation lay-out are found in Broeckx et al. [23].

2.2. Meteorological data and soil data

A complete set of environmental variables were recorded

continuously from June 2010 till present as described in Zona

et al. [24,25]. Soil temperaturewasmonitored from the surface

until 1 m depth; air temperature and relative humidity were

collected at about 5.4 m above the surface. All sensors for

these measurements were placed in the immediate proximity

of an eddy covariance (EC) mast (see below). For more details

on the instruments used we refer to Zona et al. [24,25].

2.3. Quantification of carbon pools

2.3.1. Foliage pool (F )
Leaf litter was collected during leaf fall from early September

to December of GY2 in two plots of 5 � 6 trees for each ge-

notype within each former land use type (n ¼ 48). In each plot

three perforated litter traps (litter baskets) of 0.57 m � 0.39 m

were placed on the ground along a diagonal transect between

the rows covering the wide and the narrow inter-row spac-

ings. Every two weeks the litter traps of each plot were

emptied and leaf dry biomass was determined after oven

drying at 70 �C. Successively collected leaf biomass was

cumulated over time to obtain the yearly produced foliage. C

mass fractions of the leaves were determined on a mixed

subsample of three randomly selected mature leaves of

different individual leaf area and from different tree heights

per plot in September of GY2, at the time whenmaximum leaf

area index was reached [23]. Leaves of plots with the same

genotype � land use type combination were merged, yielding

six leaves per mixed sample. Samples were ground and ana-

lysed by dry combustion with an NC element analyzer (NC-

2100 element analyzer, Carlo Erba Instruments, Italy). These C

mass fractions were used to quantify the foliage C production

per plot. An average foliage C pool value was then calculated

by weighing the averages per genotype � land use type com-

bination with their proportional area in the plantation.

http://dx.doi.org/10.1016/j.biombioe.2013.05.033
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2.3.2. Aboveground woody biomass pool (Ste þ Br)
Aboveground woody biomass was determined by combining

stem diameter inventory data with allometric equations

relating woody biomass with stem diameter. Stem diameter

at 22 cm above soil level [26,27] was measured in December

of GY1 and of GY2 for all trees in one row of each monoclonal

block. If a tree had multiple stems, every stem was measured

within the tree. Missing trees were recorded as zero to correct

for the effective tree density. For each genotype an allometric

power relationship was established linking aboveground

woody (dry) biomass to stem diameter. Based on the diam-

eter distribution at the end of GY2, ten shoots for each ge-

notype were selected for destructive harvest, covering the

widest possible diameter range. Shoot diameter (D) at 22 cm

was measured with a digital caliper (model CD-15DC, Mitu-

toyo Corporation, Japan, 0.01 mm precision). The stem was

then harvested at 15 cm above soil level, the average har-

vesting height of the plantation. After determination of dry

biomass (DM) of each stem, values were plotted against

diameter and fitted as DM ¼ a $ Db for each of the 12 geno-

types (with a and b regression coefficients; cfr. Ref. [27]). All

12 power regressions had an R2 value of more than 97% with

a significance p-level < 0.001. For each genotype a mixed

subsample of grated wood material of stem (Ste) and

branches (Br) of ten trees was used for the analysis of C mass

fraction by dry combustion. From diameter inventories and

allometric equations, a weighted average of the change in

abovegroundwoody biomass C pool during the second growing

season was calculated as the difference between the standing

pool after GY2 and GY1.
2.3.3. Belowground woody biomass pool (CR) and stump (Stu)
Coarse root woody biomass was determined by excavation of

the root system. Because of the high labour intensity, excava-

tion was restricted to genotypes Koster (P. deltoidesMarsh � P.

nigra L.) and Skado (P. trichocarpa Hook. � P. maximowiczii

Henry), selected as most representative for the plantation

basedonparentage, origin andarea coverage in the plantation.

For both genotypes five trees of different stemdiameters (from

20mm to 60mmat 22 cm height) were selected within each of

both former land use types. Right after harvest in February

2012, remaining stumps (Stu) and rootswereexcavatedover an

area of 1.1m� 1.125m (planting distance in the rows� sumof

half inter-row distances). All roots within this sampling area

were collected, assuming that roots from adjacent trees

compensated for roots of the selected tree growing outside the

sampled area. Excavation depth was limited to 0.6 m, as very

few roots were observed under 0.6 m [28]. Coarse roots

(Ø>2mm)weresampled,and total drybiomassof thesecoarse

roots (CR) and the remaining 15 cm high stump was deter-

minedafter ovendryingat 70 �C. Sinceno significant effectwas

found for genotype or former land use, all data were pooled;

belowgroundwoody biomass and stumpbiomasswere plotted

against stem diameter at 22 cm. As for aboveground woody

biomass (cfr. Section2.3.2), anallometric power regressionwas

fitted. From the diameter inventory the average belowground

woody biomass and stump biomass pool were estimated for

bothGY1andGY2. Sincenocoarse root turnoverwasobserved,

the belowground biomass production of the GY2 was
calculated as the standing pool after GY2 minus the standing

pool after GY1. Dried rootwoodwas grated for CN-analysis. An

average of the C mass fraction was used for calculating the

belowground woody C pool.
2.3.4. Fine root pool (FR)
Sequential soil coring was used to determine fine root pro-

duction in the same two genotypes as for belowground

woody biomass determination, i.e. Koster and Skado. From

February to November of GY2 the upper 15 cm soil layer was

sampled monthly using an 8 cm diameter � 15 cm deep

hand-driven corer (Eijkelkamp Agrisearch equipment, The

Netherlands) [29]. At every sampling campaign 20 samples

were collected for each genotype of which half in the narrow

and half in the wide inter-row spacings, randomly spread

over the planting area within the former pasture land use

type. Fine roots (Ø < 2 mm) were picked from the sample by

hand while (i) separating out weed roots from poplar roots,

and (ii) sorting poplar roots in dead and living roots. The

sorting of dead and living roots was based on the darker

colour and the poorer cohesion between the cortex and the

periderm of the dead roots [30]. Following washing, fine

poplar roots were oven dried at 70 �C for 1e4 days to

determine the dry root biomass per soil surface area. Sub-

samples of dried roots were grinded and analysed for the C

mass fraction (NC-2100 element analyzer, Carlo Erba In-

struments, Italy). Fine root production during GY2 (F ) was

estimated using the decision matrix method for sequential

coring based on the changes in pools of living and dead roots

between successive samplings [31]. There was a significant

difference in fine root biomass between wide and narrow

inter-row spacings when compared in a t-test [32]. The cu-

mulative (fine) root biomass production over the year was

consequently weighted by the area of inter-row spacings,

averaged over both genotypes and converted to carbon using

the average fine root C mass fraction.
2.3.5. Soil carbon pool (S)
Soil C content (S) was assessed before plantation establish-

ment in GY1 (March 2010). Sampling was performed at 110

spatially distributed locations, of which half in each former

land use type [23]. Every 15 cm up to a depth of 90 cm an

aggregate sample and a bulk density sample were taken by

core sampling (Eijkelkamp Agrisearch equipment, The

Netherlands). C mass fractions were determined in three

replicates per sample by dry combustion (NC-2100 element

analyzer, Carlo Erba Instruments, Italy). From C mass frac-

tions and bulk densities, the carbon pool per 15 cm depth in-

terval was calculated and cumulated over 90 cm. The averages

per land use type were weighted by their proportion of plan-

tation area to estimate the initial soil C pool. The input of

above- and belowground litter from the poplar trees could

lead to a soil C enrichment in the long term, as compared to

the arable land where crop residues were removed annually

during the former land use. Though even in a shorter term an

enriching effect in upper soil layers has been observed in a

poplar plantation in Italy [33]. However, soil C pool change

generally is a very slow process because compared to the total

soil C pool the annual changes are relatively small [34]. We

http://dx.doi.org/10.1016/j.biombioe.2013.05.033
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therefore assumed that the poplar trees had not significantly

changed the soil C pool over the two years.

2.4. Quantification of carbon fluxes

2.4.1. Soil CO2 efflux (RS)
The CO2 efflux from the soil (RS) was monitored by an

automated soil CO2 flux system (LI-8100, LI-COR Biosciences,

Lincoln, NE, USA). Sixteen long-term chambers operating as

closed systems were connected to an infrared gas analyzer

through a multiplexer (LI-8150, LI-COR Biosciences, Lincoln,

NE, USA). The 16 chambers were spatially distributed over

the plantation covering both former land use types and only

two genotypes (Grimminge (P. deltoides Marsh. � (P. tricho-

carpa Hook. � P. deltoides Marsh.)) and Skado) due to

restricted cable lengths. The system was installed at the end

of March of GY2 and logged soil CO2 efflux for each chamber

successively every hour until the end of GY2. Soil CO2 efflux

was extrapolated for the period of JanuaryeMarch by a

Neural Network analysis based on soil temperature, which

was continuously monitored throughout the year (cfr. Sec-

tion 2.2). Soil CO2 efflux was independent of the genotype

planted, but differed between the two types of former land

use [35]. Values of CO2 efflux were integrated over time and

weighted by the proportion of the two former land use types

to obtain the plantation average.

2.4.2. Woody tissue CO2 efflux (RSteþBr)
On both genotypes Grimminge and Skado stemCO2 effluxwas

measured during two intensive field campaigns in GY2. The

first campaign was carried out during four days from 8 to 12

August of GY2, whereas the second campaign took place from

26 to 30 November of GY2 when trees were in a dormant state.

For both genotypes five trees of different diameters (ranging

from 29.7 mm to 50.0 mm, and from 29.9 mm to 50.1 mm at

22 cm height for the first and second campaign, respectively)

were selected and measured four times during each

measuring campaign at different times of the day. The LI-

6400XT gas analyzer (LI-COR Biosciences, Lincoln, NE, USA)

was used as an open system in combination with a Plexiglas

stem cuvette of 17 cm length andwith a diameter of 11 cm (cfr.

Ref. [36]). The cuvette was assembled on collars, sealed air-

tight at approximately 1 m stem height; for each measure-

ment stem diameter at the attachment point was also recor-

ded. The stem cuvette was equipped with an infrared

thermocouple to measure stem temperature during each

measurement and covered with aluminium foil to avoid

possible CO2-refixation of the bark. Before eachmeasurement,

the sample and reference cells of the gas analyzer were

matched after the air in the cuvette was allowed tomix and to

stabilize for 30 min. Five successive measurements were

taken and the average was used for further calculations.

Stem CO2 efflux data were tested for genotype and diam-

eter effects, but no significant effects were found. Conse-

quently data of August e with a temperature range of

17.8e27.4 �C e and data of November e with a temperature

range of 8.2e14.1 �C e were pooled to establish two Q10 func-

tions, i.e. one for the growing season and one for the dormant

period. The following exponential temperature response was

fitted (Eq. (1), originating from Ref. [37]):
SE ¼ E10$Q10ððT�10Þ=10Þ (1)
with SE ¼ stem CO2 efflux, E10 ¼ stem CO2 efflux at a standard

temperature of 10 �C, T¼ temperature and Q10 ¼ the change in

the rate of stem CO2 efflux with a 10 �C change in stem tem-

perature. Stem temperature was closely related to air tem-

perature ( p � 0.01), which was logged half-hourly during the

year (cfr. Section 2.2). Stem diameter increment was logged

(Point Dendrometer ZN11-Ox-WP, Zweifel Consulting,

Switzerland) during GY2 from March to December and

showed a linear increase in diameter fromApril to September.

The average stem surface area was calculated from the

weighted average stem diameter and stem height over the

plantation (data published in Ref. [23]). The contribution of

branches in the aboveground tree structure (data from Ref.

[38]) was also included. Combined with the average tree

density an estimate of yearly woody tissue CO2 efflux was

obtained.
2.4.3. Foliar respiration (RF)
Leaf gas exchange was measured with a portable open-path

gas exchange measurement system (LI-6400, LI-COR Bio-

sciences, Lincoln, NE, USA) equipped with a leaf chamber

fluorometer (LI-6400-40, LI-COR Biosciences, Lincoln, NE,

USA). Four trees of six genotypes (Bakan and Skado (P. tricho-

carpa Hook. � P. maximowiczii Henry); Grimminge; Koster and

Oudenberg (P. deltoides Marsh � P. nigra L.); Wolterson (P. nigra

L.)) were selected for the measurements. The first mature leaf

of the current-year shoot in the upper canopywas sampled for

gas exchangemeasurements inmonthly campaigns fromMay

to September of GY2. Photosynthetic light response curves

were obtained by measurements of the net photosynthetic

rate at photosynthetic photon flux densities (PPFD) of 1500,

1000, 800, 600, 400, 200, 100 and 0 mmol m�2 s�1 (blue-red LED

source type LI-6400-02B, 13% blue light). Leaves were allowed

to equilibrate at least 2 min at each step before logging the

data. The following conditions were maintained in the

cuvette: CO2 concentration of 400 mmol mol�1, block temper-

ature of 25 �C and vapour pressure deficit of 1.07 kPa � 0.03.

The PPFD response curve, representing the net photosynthetic

rate as a function of PPFD, was fitted to the data by a rectan-

gular hyperbola according to Marshall and Biscoe [39] and

Thornley and Johnson [40]. Dark respiration at leaf scale (Rdark)

was obtained from the y-axis intercept (i.e. the net photo-

synthetic rate at 0 mmol m�2 s�1).

The evolution of leaf area was monitored for all 12 geno-

types by monthly leaf area index (LAI) measurements from

April to November of GY2 (cfr. Ref. [38]). In four replicated

measurement plots per former land use type and per genotype

LAI was measured indirectly using an LAI-2200 Plant Canopy

Analyzer (LI-COR Biosciences, Lincoln, NE, USA). Measure-

ments were taken along two diagonal transects in each plot

with the sensor parallel to the rows and perpendicular to the

rows, by comparison of above- and below-canopy readings

with a 45� view cap. An average LAI over all genotypes was

calculated at each measurement time.

No significant seasonal trend in Rdark was observed, hence

Rdark was averaged over time and genotypes. As foliar dark

respiration generally decreases from the upper to the lower

canopy [41e44], this value was multiplied by a factor 0.75 [44].

http://dx.doi.org/10.1016/j.biombioe.2013.05.033
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This factor is the ratio of foliar respiration rates of sunlit

leaves in the upper crown to leaves in medium light, repre-

senting the main proportion of the canopy for P. deltoides.

Since a constant block temperature was set, no Rdark-tem-

perature relationship was established. To approach the tem-

perature response of foliar (dark) respiration, a Q10 value of 2.1

was used, established for P. deltoides leaves in a mid-canopy

position [44]. The combination of this Rdark value with the

evolution of LAI during the season resulted in an estimation of

the total foliar respiration at ecosystem scale (RF) for GY2.

2.4.4. Gross primary production (GPP)
Gross Primary Production (GPP) was estimated using the

terrestrial biosphere model ORCHIDEE (ORganizing Carbon

and Hydrology in Dynamic EcosystEms [45]). This process-

based model simulating the phenomena of the terrestrial

carbon cycle, calculates the C3 photosynthesis according to

Farquhar et al. [46]. The annual GPP was estimated from LAI,

from the photosynthetic parameters, i.e. maximum carbox-

ylation rate (Vcmax) and maximum electron transport rate

(Jmax), and from a set of meteorological parameters (short and

long-wave radiation, precipitation, wind velocity, humidity,

temperature and pressure of the air).

Values for the photosynthetic parameters Vcmax and Jmax

were obtained through gas exchange measurements. The

experimental designwas the sameand themeasuringprotocol

was similar as the one explained above for the PPFD response

curves to determine foliar respiration. The PPFD was fixed at a

saturating value of 1500 mmol s�1 m�2. Leaves were acclima-

tized for 10 min at a CO2 concentration in the leaf cuvette of

400 mmol mol�1, after which the net photosynthetic rate at a

sequence of ten different CO2 concentrations (i.e. 400, 300, 250,

150, 100, 50, 500, 750, 1000 and1250 mmolmol�1)wasmeasured.

Values for Vcmax and Jmax were determined from the AeCi

response curves using the equations of Farquhar et al. [46].

2.4.5. Net ecosystem exchange (NEE)
Net Ecosystem Exchange (NEE) was monitored using the

eddy covariance (EC) technique. An EC mast was installed in

the northeastern part of the plantation in June of GY1 and

was continuously operated to the present day. The mast

included a sonic anemometer for the measurement of the

three-dimensional wind components, wind speed, wind di-

rection, and a closed-path CO2/H2O infrared analyzer (LI-

7000, LI-COR Biosciences, Lincoln, NE, USA) among others.

The CO2 and sonic wind speed were recorded at 10 Hz using

a model CR 5000 data logger (Campbell Scientific, Logan,

Utah, USA). Fluxes of CO2 were calculated using the EdiRe

software (R. Clement, University of Edinburgh, UK [47]) and

averaged over 30 min. Data were filtered and gap filled after

which these data were used to calculate cumulative NEE

averaged for GY2. Further details on the EC unit, on the gap

filling procedure, and on the flux calculations are described

in Zona et al. [25]. Only poplars were included in the foot-

print of the EC mast.

2.5. Carbon balance

The value of NEE measured through EC was compared with

the NEP determined via two different approaches, i.e. the
pool-change-based approach and the component-flux-based

approach. The sum of the changes in carbon pools of the

different plant components represents the bulk of the net

primary production (NPP), which is the result of GPP and the

autotrophic respiration [16,48]. In this study, the total auto-

trophic respiration (Raut) was calculated as the sum of

foliar respiration, stem CO2 efflux and 40% of the soil CO2

efflux (RS aut) representing root respiration [35,49]. NEP results

from NPP and the heterotrophic respiration (Rhet), which was

taken as the remaining 60% of the total soil CO2 efflux

thereby ignoring respiration from aboveground animals and

microbes. NEP was calculated via the pool-change-based

approach as:

NEP ¼ NPP� Rhet ¼ Fþ ðSteþ BrÞ þ Stuþ CRþ FR� 0:6$RS (2)

where all values are expressed in g m�2 y�1 of carbon. A few

minor components of possible C losses were not taken into

account for theNEP calculation, i.e. non-CO2 losses as CO, CH4,

volatile organic compounds (VOCs) to the atmosphere, dis-

solved organic carbon (DOCs) to deeper soil layers, mycor-

rhizae, understoryweedgrowthandherbivory. By applying the

component-flux-based approach, NEP was calculated as the

incoming GPP flux minus the total ecosystem respiration:

NEP ¼ GPP� Reco ¼ GPP� ðRS þ RSteþBr þ RFÞ (3)

where Reco represents the total ecosystem respiration calcu-

latedas thesumofRS,RSteþBr andRF, alsoexpressed ingm�2 y�1

of carbon.

NEE, which ismostly defined as themeasured flux from the

ecosystem to the atmosphere has an opposite sign to NEP; a

negative NEE means an uptake by the ecosystem. For reasons

of consistencywithNEP, the positive value of NEE in this study

means a net uptake of carbon.

The contribution of NPP within GPP is often termed carbon

use efficiency (CUE), being the ratio of the net production to

the sum of the net production and the respiratory cost (NPP/

[NPP þ Respiration]).
3. Results

As for nearly all terrestrial biomes [50], the largest C pool in the

ecosystem was situated in the soil till 90 cm depth (S; Fig. 1a).

Among the persisting C pools of the plant system (woody

biomass), the highest amount of carbon was stored in the

abovegroundwoody biomass (Fig. 1). The areaweighted average

over all genotypes of the root:shoot ratiowas 0.46 after GY2. The

results of the pool-change-based and component-flux-based

measurements are graphically presented in Figs. 1b and 2. The

NEE forGY2determinedvia ECwasvaluedat 96 gm�2 y�1 carbon

uptake, whereas NEP was estimated to be 140 and 199 gm�2 y�1

through the pool-change-based and component-flux-based

approach, respectively. The NEP values estimated through both

the component-flux-based and the pool-change-based ap-

proaches were 108% and 47% higher, respectively, than the NEE

value of the EC. However, considering the magnitude of the

components of the NEP calculation (Fig. 2) and the considerable

uncertainty levels in the three techniques, results were compa-

rable (asterisks in Fig. 2). The positive value of NEP showed that

theecosystemwasalreadyanetsinkforCO2 inGY2.Whereas the

http://dx.doi.org/10.1016/j.biombioe.2013.05.033
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Fig. 1 e Components andprocessesof the carbonbalanceof ahigh-density poplar plantationduring its secondyear of growth.

(a) Bold outlined boxes on the left-hand side represent the standing C pools after two growth years (values in gmL2). (b) Boxes

on the right-hand side trees represent annual pool changes, and arrows represent annual integrated C fluxes for the second

growing season (values in g mL2 yL1). Averaged values are given with standard errors (GPP was a modelled parameter, not

including an error range). (SteD Br)[ abovegroundwoody biomass pool, Stu[ abovegroundwoody stump (15 cm stem) pool

remaining after coppicing, CR[ coarse root (Ø > 2 mm) pool, S [ soil pool till 90 cm depth (determined before plantation

establishment), F [ foliage pool, FR[ fine root (Ø< 2 mm) pool, RS [ total soil CO2 efflux, RSteDBr [ CO2 efflux from

aboveground woody biomass and RF [ foliar respiration. NEE[ net ecosystem exchangemeasured through the eddy

covariance technique (indicated by the circular arrow), which in this case results in a net carbon uptake.
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plantation was still a net C source during the first year GY1 [25],

theCassimilationof trees (GPPof 1281gm�2 y�1) in the following

year exceeded the absolute value of total Re. By summing all C

pools, NPP was estimated at 493 � 27 g m�2 y�1

(average � standard error) and the total autotrophic respiration

(Raut) was estimated at 729� 26 gm�2 y�1. Furthermore, the sum

of Raut and NPP resulted in 1222 � 37 g m�2 y�1, in which they

contribute 60% and 40% (CUE), respectively (Table 1). This sume

definedasGPPewasveryclose (only4.6%lower) tothesimulated

GPP from the ORCHIDEE-model using leaf gas exchange

measurements.

Soil CO2 efflux, stem þ branch CO2 efflux and foliar respi-

ration accounted for 54%, 10% and 35% of the total ecosystem

respiration, respectively (Table 1). When these three respira-

tory fluxes were related to GPP, they respectively consumed

46%, 9% and 30% of the total carbon uptake. The remaining

15% of GPP formed NEP. Whereas the aboveground biomass

pool showed the highest changes over GY2 it produced the

lowest integrated CO2 efflux. The aboveground biomass pool

had the highest share of NPP (51%) followed by the foliage

(29%). Both fine (4% of NPP) and coarse roots (13% of NPP)

showed the lowest biomass production among all biomass

pools e excluding the stump biomass which was considered

part of the aboveground woody biomass.
4. Discussion

Our SRC plantation already represented a significant C sink

after two years while other SRC plantations established on

agricultural land took two [12] or more than four years [9]

before becoming an annual net C sink. During the first years

after plantation establishment, crop growth is generally not

sufficiently high to compensate for the C losses due to land

use change. Several studies showed an initial decrease in the

soil C pool during the first years after SRC planting on agri-

cultural soils and grasslands due to intensive mineralization

after cultivation [8,10e13,51]. An integrative study looking at

patterns in C cycling across biomes showed that the general

trend of negative NEP rates of young (0e10 years) temperate

forests was caused by the high heterotrophic respiration rates

resulting from disturbance [52]. Likewise, soil C content

declined in our plantation during the first two years of growth

[35]. However, our present results showed that the growth

performance of the poplar canopy counterbalanced this loss

already in the second year of growth. Without taking into

account other greenhouse gases, this suggests a promising

role for SRCwith poplar on former agricultural landswith high

available nitrogen levels.
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Fig. 2 e Components of the carbon balance (in g mL2 yL1),

using three different approaches where uptake and storage

are displayed as positive, and release or loss are displayed

as negative. The left bar stands for the pool-change-based

approach (pool change bars filled in grey); the middle bar

stands for the component-flux-based approach (non-filled

bars represent integrated fluxes); the right-hand bar

represents the eddy covariance measurements (hatched

bar). Error bars indicate standard errors (GPP was a

modelled parameter, not including an error range).

Asterisks show the net result (carbon balance)

representing the NEP or NEE for the eddy covariance

measurements. For exact values, we refer to the text and to

Fig. 1. (Ste D Br) [ aboveground woody biomass pool,

Stu [ aboveground stump (15 cm stem) pool remaining

after coppicing, CR [ coarse root (Ø > 2 mm) pool,

F [ foliage pool, FR [ fine root (Ø < 2 mm) pool, RS [ total

soil CO2 efflux, Rhet [ heterotrophic soil respiration (60% of

RS), RSteDBr [ CO2 efflux from aboveground woody biomass

and RF [ foliar respiration. NEE[ net ecosystem exchange

measured through the eddy covariance technique, which

in this case results in an uptake.

Table 1 e Relative contribution of carbon pool changes to
the net primary production (NPP) and the gross primary
production (GPP) and relative contribution of fluxes
within the total ecosystem respiration (Reco) and GPP.
Values are given in percentage of NPP, Reco and GPP.
F [ foliage pool, (Ste D Br) [ aboveground woody
biomass pool (stem D branches), Stu [ aboveground
woody stump (15 cm stem) pool remaining after
coppicing, CR [ coarse root (Ø > 2 mm) pool, FR [ fine
root (Ø < 2 mm) pool, RSteDBr [ CO2 efflux from
aboveground woody biomass, RF [ foliar respiration and
RS [ the total annual soil CO2 efflux which is divided in
40% RS aut attributed to autotrophic soil (root) respiration
and 60% RS het as heterotrophic soil respiration.

NPP Reco GPP

NPP 100 40.4

F 28.8 11.6

Ste þ Br 50.6 20.4

Stu 3.1 1.3

CR 13.3 5.4

FR 4.1 1.7

Raut 67.4 59.6

RSteþBr 10.1 9.0

RF 35.5 31.4

RS aut 21.8 19.3

Rhet z RS het 32.6
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Only few studies have assessed the NEP andNPP for a poplar

SRC plantation during the first rotation. In a Free Air CO2

Enrichment (FACE) experiment, Gielen et al. [19] studied net

carbonstorage inapoplar (P. nigra andPopulus euramericana) SRC

ecosystem in central Italy. In the second year after establish-

ment a very highNPP of 1284 gm�2 y�1 of carbon andanaverage

NEP of 1066 g m�2 y�1 were reached in the control treatment.

Very contrasting results were found for an SRC plantation in

Flanders with P. trichocarpa � P. deltoides, Salix viminalis, Betula

pendula and Acer pseudoplatanus, reporting values after the sec-

ondgrowthyear of 310 gm�2 y�1 and�360gm�2 y�1 forNPP and

NEP, respectively [9]. In this last mentioned study no weed

control, fertilization or irrigation were applied. Combined with

the high heterotrophic soil respiration rate (670 g m�2 y�1), this

lack of management resulted in a net C source after the second

year [9]. In contrast the SRC plantation in the aforementioned

FACE experiment was growing in a warmer Mediterranean

climate, was irrigated, weeds were removed and herbivores

were treated [19]. Moreover, carbon input to the soil was higher

than the soil C loss in that study.

Our EC estimate of NEE fell within the range of

70e740 g m�2 y�1 reported for temperate forests [53]. The dif-

ferences between the EC result and the NEP estimations,
however, are higher than most studies implementing both EC

and ecological inventory techniques for estimating NEE and

NEP in forest ecosystems. On average, estimates of the net C

balance differed between these techniques by 20e30%,

although ranging from 7% to 148% [54e59]. Moreover, differ-

ences between NEP and NEE estimates in the aforementioned

studies were not systematic across sites; at some sites NEP

seemed to overestimate NEE, while the opposite was true in

others.

The quantification of NEE from EC measurements is prone

to several uncertainties. The main sources of error of EC

measurements are associated with (i) the spatial representa-

tiveness of the measured fluxes (footprint issue), (ii) the

summation procedure, (iii) the data gap filling and (iv) cor-

rections to night-time data [47]. The precision of the annual

integrated EC flux measurements was previously reported as

�5% [60,61]; for ideal sites, i.e. extensive canopies on flat

terrain, this error bond was set at �50 g m�2 y�1 [62]. The

uncertainty of the annual NEE flux in our plantation was

estimated at 15 g m�2 y�1 [25], which is, however, much

smaller than the differences with NEP estimations. We hy-

pothesize that the component-flux-based approach to deter-

mine NEPwas the least accurate due to the large uncertainties

introduced during upscaling both in space and time. Despite

the high precision of foliar CO2 efflux measurements at leaf

scale, crude assumptions were made concerning daily and

seasonal evolution which were largely based on growth and

temperature, possibly introducing uncertainties in the annual

estimates. Spatial uniformity was assumed when scaling up

from the leaf to the tree and the stand levels. Similar argu-

ments hold for thewoody tissue respiration. Amajor difficulty

involved in measurements of soil, stem and foliar respiration

is the respired CO2 which dissolves in the xylem sap. This

http://dx.doi.org/10.1016/j.biombioe.2013.05.033
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portion of respired CO2 is transported away from the location

of production e roots or stem e via the sap flow to upward

locations e up to stem, branches and foliage e where it is

released to the atmosphere [63e66] or possibly fixed by

photosynthesis [65]. Consequently, CO2 efflux measured at a

specific location within the tree cannot be considered as the

respiration of the measured tissue. Root (and stem) respira-

tion could therefore have been underestimated, whereas stem

and foliar respiration could be overestimated. The largest

uncertainty involved in the soil CO2 efflux estimation was the

upscaling from a limited number of chambers to the total

plantation area (spatial heterogeneity). However, high tem-

poral accuracy was achieved since soil CO2 efflux was moni-

tored continuously. The relatively simple measures of

aboveground C pools (i.e. Ste þ Br and F) had a high precision

and small aggregation errors since detailed inventories over

the whole plantation and among all genotypes were made.

Errors in pool change calculations were also limited since the

changes are in the same order of magnitude as the pools

themselves. Belowground woody biomass had a lower accu-

racy due to the smaller sample size and the limited number of

genotypes that could be sampled. Fine root production is

associated with larger uncertainties, which applies in general,

regardless the method used [67,68]. The largest uncertainty in

the pool-change-based approach was, however, the inclusion

of the RS het which resulted from the partitioning of the total RS

in an autotrophic and a heterotrophic part [35].

A few missing C pools and fluxes, although of minor

importance, also hampered closing the carbon balance. Non-

CO2 losses as CO, CH4 as well as VOCs to the atmosphere,

DOCs to deeper soil layers, mycorrhizae, understory weed

growth and herbivory were not counted in the NEP calcula-

tion. All these carbon balance related processes are usually

negligible, but they remain difficult to quantify or to measure

[15,69,70]. Small release fluxes of CH4 were measured at our

SRC site [25]. From preliminary results of average DOC con-

centration and water balance data, the losses of DOCs during

GY2 were estimated at 4.7 g m�2 y�1, which could be consid-

ered as irrelevant with regard to the magnitude of GPP and

even NEE. Foliage C losses due to herbivory on the Populus

trees were estimated at maximal 1% (personal observations),

in contrast to the Salix species in our plantation, on which we

observed substantial infestations of willow beetles (Phratora

vulgatissima). Emissions of VOCs represented an estimated C

loss of 1e2% of GPP of which more than 90% is represented by

isoprene (personal communication based on preliminary

analysis of PTReTOFeMS-based flux data; F. Brilli). This C loss

corresponded to 13e25 g m�2 y�1 which was comparable with

previous findings for forests [15,71,72]. The understory of

herbs dominated by thistles (Cirsium arvense) was sparse, and

was not quantified in the present study.

At our SRC site fine roots constituted only 4% (Table 1) of

the annual NPP whereas for forests it typically ranges from 8%

to 76% [73]. The poor rooting reflected the mesic conditions

and the high nitrogen (N) availability of the soil in our plan-

tation, resulting in a lower investment (C allocation) in roots

as compared to aboveground biomass [74]. This benefited

wood production at an even young plantation age, taking the

highest of the total NPP among the different C pools. Foliage

had the second largest contribution in NPP. Populus trees show
an indeterminate growth habit [75,76], characterized by

continuous shoot growth and leaf production over the

growing season. Young developing leaves are net importers of

assimilates. When fully expanded they export both acrope-

tally to developing leaves and basipetally to stem and roots

until matured; afterwards translocation is mostly to the lower

stem and roots [75,76]. Mature leaves generally use 20e30% of

the C fixed for respiration and maintenance, the remaining

70e80% is exported to developing leaves and stem and roots

[77]. Our findings of RF partitioning for 31% in GPP confirm

these general observations. RF corresponded to half of the

autotrophic respiration and was comparable to previous

findings in broadleaved forests [78]. This high respiratory cost

of foliage could be attributed to the high cellular activity in

developing leaves [79]. RF contributed the second highest

within the Reco; RS took the highest share of Reco of 54% which

is slightly lower than the European average of 63% [80].

In forest ecosystems soil carbon efflux is the largest respira-

tory C flux and following GPP the second most important C

flux [81e85].

The 40% overall CUE value is within the average range of

39e59% previously reported for temperate deciduous forests

[86e89]. However, it is much lower than the 60e69% reported

for a Populus SRC plantation in the second year of growth [19]

and lower than the reported average of 58 � 3% (�st. dev.) for

forests with high-nutrient availability [90] which generally

invest a larger fraction of GPP to wood compared to forests

with low-nutrient availability [86]. In comparison with the

low measured RSteþBr the high share of NPP represented in

the aboveground wood production of our SRC plantation

(Table 1), suggested an efficient production of wood. This

could further justify a high interest in SRC cultures since the

wood is the harvestable, and thus economically interesting

part.

In conclusion, we were able to quantify all carbon pools

and fluxes determining the C balance of this fast-growing SRC

culture. The ecosystem was a net carbon sink in the second

year of the first rotation, although the results of the different

assessment techniques differed in the exact values. The

highest respiratory flux was represented by the soil CO2 efflux

whereas the aboveground woody biomass showed the largest

carbon pool change.
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[51] Nikièma P, Rothstein DE, Miller RO. Initial greenhouse gas
emissions and nitrogen leaching losses associated with
converting pastureland to short-rotation woody bioenergy
crops in northern Michigan, USA. Biomass Bioenergy
2012;39:413e26.

[52] Pregitzer KS, Euskirchen ES. Carbon cycling and storage in
world forests: biome patterns related to forest age. Glob
Change Biol 2004;10(12):2052e77.

[53] Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S,
et al. FLUXNET: a new tool to study the temporal and spatial
variability of ecosystem-scale carbon dioxide, water vapor
and energy flux densities. Bull Am Meteorol Soc
2001;82(11):2415e34.

[54] Curtis PS, Hanson PJ, Bolstad P, Barford C, Randolph JC,
Schmid HP, et al. Biometric and eddy-covariance based
estimates of annual carbon storage in five eastern North
American deciduous forests. Agr Forest Meteorol
2002;113(1e4):3e19.

[55] Ehman JL, Schmid HP, Grimmond CSB, Randolph JC,
Hanson PJ, Wayson CA, et al. An initial intercomparison of
micrometeorological and ecological inventory estimates of
carbon exchange in a mid-latitude deciduous forest. Glob
Change Biol 2002;8(6):575e89.

[56] Black K, Bolger T, Davis P, Nieuwenhuis M, Reidy B, Saiz G,
et al. Inventory and eddy covariance-based estimates of
annual carbon sequestration in a Sitka spruce (Picea sitchensis
(Bong.) Carr.) forest ecosystem. Eur J For Res
2007;126(2):167e78.

[57] Ohtsuka T, Mo W, Satomura T, Inatomi M, Koizumi H.
Biometric based carbon flux measurements and net
ecosystem production (NEP) in a temperate deciduous broad-
leaved forest beneath a flux tower. Ecosystems
2007;10(2):324e34.

[58] Gough CM, Vogel CS, Schmid HP, Su H-B, Curtis PS. Multi-
year convergence of biometric and meteorological estimates
of forest carbon storage. Agr Forest Meteorol
2008;148(2):158e70.

[59] Wang M, Guan D-X, Han S-J, Wu J-L. Comparison of eddy
covariance and chamber-based methods for measuring CO2

flux in a temperate mixed forest. Tree Physiol
2010;30(1):149e63.

[60] Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC.
Measurements of carbon sequestration by long-term eddy
covariance: methods and a critical evaluation of accuracy.
Glob Change Biol 1996;2(3):169e82.

[61] Moncrieff JB, Malhi Y, Leuning R. The propagation of errors in
long-term measurements of landeatmosphere fluxes of
carbon and water. Glob Change Biol 1996;2(3):231e40.

[62] Baldocchi DD. Assessing the eddy covariance technique for
evaluating carbon dioxide exchange rates of ecosystems:
past, present and future. Glob Change Biol
2003;9(4):479e92.

[63] Teskey RO, McGuire MA. Carbon dioxide transport in xylem
causes errors in estimation of rates of respiration in stems
and branches of trees. Plant Cell Environ 2002;25(11):1571e7.

[64] Saveyn A, Steppe K, McGuire MA, Lemeur R, Teskey RO. Stem
respiration and carbon dioxide efflux of young Populus
deltoides trees in relation to temperature and xylem carbon
dioxide concentration. Oecologia 2008;154(4):637e49.

[65] Teskey RO, Saveyn A, Steppe K, McGuire MA. Origin, fate and
significance of CO2 in tree stems. New Phytol
2008;177(1):17e32.

[66] Aubrey DP, Teskey RO. Root-derived CO2 efflux via xylem
stream rivals soil CO2 efflux. New Phytol 2009;184(1):35e40.

[67] Vogt KA, Vogt DJ, Bloomfield J. Analysis of some direct and
indirect methods for estimating root biomass and
production of forests at an ecosystem level. Plant Soil
1998;200(1):71e89.

[68] Janssens IA, Sampson DA, Curiel-Yuste J, Carrara A,
Ceulemans R. The carbon cost of fine root turnover in a Scots
pine forest. Forest Ecol Manag 2002;168(1e3):231e40.

[69] Ciais P, Wattenbach M, Vuichard N, Smith P, Piao SL, Don A,
et al. The European carbon balance. Part 2: Croplands. Glob
Change Biol 2010;16(5):1409e28.

[70] Smith P, Lanigan G, Kutsch W, Buchmann N, Eugster W,
Aubinet M, et al. Measurements necessary for assessing the
net ecosystem carbon budget of croplands. Agr Ecosyst
Environ 2010;139(3):302e15.

[71] Hamilton JG, DeLucia EH, George K, Naidu SL, Finzi AC,
Schlesinger WH. Forest carbon balance under elevated CO2.
Oecologia 2002;131(2):250e60.

[72] Ciccioli P, Brancaleoni E, Frattoni M, Marta S, Brachetti A,
Vitullo M, et al. Relaxed eddy accumulation, a new technique

http://refhub.elsevier.com/S0961-9534(13)00296-1/sref31
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref31
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref31
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref31
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref31
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref31
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref32
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref32
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref33
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref33
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref33
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref33
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref33
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref34
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref34
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref34
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref34
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref34
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref35
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref35
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref35
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref36
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref36
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref36
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref36
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref37
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref37
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref37
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref37
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref38
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref38
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref38
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref38
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref38
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref39
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref39
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref39
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref39
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref40
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref40
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref40
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref40
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref40
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref41
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref41
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref41
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref41
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref41
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref42
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref42
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref42
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref42
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref42
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref43
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref43
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref43
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref43
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref43
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref44
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref44
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref44
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref44
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref44
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref45
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref45
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref45
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref45
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref45
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref45
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref45
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref46
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref46
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref46
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref46
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref46
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref46
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref47
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref47
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref47
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref47
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref48
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref48
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref48
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref48
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref48
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref48
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref49
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref49
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref49
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref49
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref49
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref49
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref49
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref50
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref50
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref50
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref50
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref50
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref50
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref51
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref51
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref51
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref51
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref51
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref51
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref52
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref52
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref52
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref52
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref52
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref52
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref53
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref53
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref53
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref53
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref53
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref54
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref54
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref54
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref54
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref54
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref55
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref55
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref55
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref55
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref55
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref56
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref56
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref56
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref56
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref56
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref57
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref57
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref57
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref57
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref57
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref58
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref58
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref58
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref58
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref59
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref59
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref59
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref59
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref59
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref60
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref60
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref60
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref60
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref60
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref61
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref61
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref61
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref61
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref61
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref62
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref62
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref62
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref62
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref62
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref63
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref63
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref63
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref63
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref63
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref64
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref64
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref64
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref64
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref65
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref65
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref65
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref65
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref65
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref66
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref66
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref66
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref66
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref66
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref67
http://refhub.elsevier.com/S0961-9534(13)00296-1/sref67
http://dx.doi.org/10.1016/j.biombioe.2013.05.033
http://dx.doi.org/10.1016/j.biombioe.2013.05.033


b i om a s s an d b i o e n e r g y 5 6 ( 2 0 1 3 ) 4 1 2e4 2 2422
for measuring emission and deposition fluxes of volatile
organic compounds by capillary gas chromatography and
mass spectrometry. J Chromatogr 2003;985(1e2):283e96.
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